

Deely Information

- 2 CE 400 MWe Units
- Fuel PRB (Cordero Rojo)
- Air Preheater single Size 33½ VIT:
 - Single retractable sootblower
- Economizer
 - 1st bank 18 rows deep (staggered)
 - 2nd bank 16 rows deep (staggered)
 - 6 Copes Vulcan T30 Retracts above 1st bank
 - 6 Copes Vulcan Half-Tracks in Cavity

Air Preheater / Staggered Economizer "Cleaning Challenges"

- Sootblowers cannot maintain cleanliness:
 - can t reach intermediate and hot layers or inside tube banks
 - not all ash gets removed
- Trapped ash gets hydrated during water wash and outages (cement)
- Water wash does not remove cement and is only partially effective in removing all ash
- Results in:
 - shorter element life
 - increased differentials (ID/FD fan hp)

Staggered Tube Arrangement

Low Temperature Fouling of PRB Coals

Cause: CaO / MgO + NaO / K₂O

Results:

- Increases low temp. fouling
- NaO / K₂O cause sintering

Where:

- Non-radiant convection tube banks
- Air Heaters
- SCR s

Solution to Pluggage Problem

- Each air preheater has a single acoustic cleaner on the gas outlet
- The economizer has two acoustic cleaners
- Operating frequency 30-40 Hz
- At this frequency the sound is:
 - most effective in keeping particles in suspension and remove existing deposits
 - in partial acoustic resonance
 - more uniform in coverage/penetration throughout economizer / air preheater

Acoustic Cleaning Hardware

2003 Unit 2:

- 2 ea on Economizer

2005 Unit 1:

- 2 ea on Economizer
- 1 ea on Air Preheater

2006 Unit 2:

1 ea on Air Preheater

Location and Frequency of acoustic cleaners were determined by 3D finite element modeling

Boiler Side Elevation

Acoustic Modeling

- Cleaning Application modeled in 3D with FEanalysis
- Frequency gets selected that has the best cleaning characteristics and best response in application
- Installation location gets optimized for uniform coverage

Experience Unit 2

- AC in service on economizer early 2004;
- APH fouled up with turning vane / economizer deposits
- AC taken out of service to preserve APH
- AC added to APH and started April 2006

Experience Unit 1

- Three AC s in service winter of 2005;
- Inspection after 5 months operation:
 - No observed areas of pluggage in the economizer
 - Hot end element looked like new
- Pressure drop was slowly falling, suggesting cleaning effect was impacting both economizer and air preheater

Outlet of Acoustic Cleaner

Cone of Acoustic Cleaner

WaveMaster[™] Acoustic Cleaner

Detail cone /transition

Gavino Perez / CPS Energy

gperez@cpsenergy.com

Mel Freund / Advanced Acoustic Technologies

mfreund@soniccleaning.com

Satellite Picture:

www.google.com select "maps

